18 research outputs found

    The anterior thalamic nuclei: core components of a tripartite episodic memory system

    Get PDF
    Standard models of episodic memory focus on hippocampal–parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a ‘temporal lobe’ stream (centred on the hippocampus) and a ‘medial diencephalic’ stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation

    Risk factors for the development of depression in patients with hepatitis C taking interferon-α

    Get PDF
    Interferon-α, currently used for the treatment of hepatitis C, is associated with a substantially elevated risk of depression. However, not everyone who takes this drug becomes depressed, so it is important to understand what particular factors may make some individuals more ‘at risk’ of developing depression than others. Currently there is no consensus as to why interferon-induced depression occurs and the range of putative risk factors is wide and diverse. The identification of risk factors prior to treatment may allow identification of patients who will become depressed on interferon, allowing the possibility of improved treatment support and rates of treatment adherence. Here, we consolidate and review the literature on risk factors, and we discuss the potential confounds within the research examined in order to better isolate the risk factors that may be important in the development of depression in these patients and which might help predict patients likely to become depressed on treatment. We suggest that interactions between psychobehavioral, genetic, and biological risk factors are of particular importance in the occurrence of depression in patients with hepatitis C taking interferon-α

    Evidence for spatially-responsive neurons in the rostral thalamus

    Get PDF
    Damage involving the anterior thalamic and adjacent rostral thalamic nuclei may result in a severe anterograde amnesia, similar to the amnesia resulting from damage to the hippocampal formation. Little is known, however, about the information represented in these nuclei. To redress this deficit, we recorded units in three rostral thalamic nuclei in freely-moving rats (the parataenial nucleus, the anteromedial nucleus and nucleus reuniens). We found units in these nuclei possessing previously unsuspected spatial properties. The various cell types show clear similarities to place cells, head direction cells, and perimeter/border cells described in hippocampal and parahippocampal regions. Based on their connectivity, it had been predicted that the anterior thalamic nuclei process information with high spatial and temporal resolution while the midline nuclei have more diffuse roles in attention and arousal. Our current findings strongly support the first prediction but directly challenge or substantially moderate the second prediction. The rostral thalamic spatial cells described here may reflect direct hippocampal/parahippocampal inputs, a striking finding of itself, given the relative lack of place cells in other sites receiving direct hippocampal formation inputs. Alternatively, they may provide elemental thalamic spatial inputs to assist hippocampal spatial computations. Finally, they could represent a parallel spatial system in the brain

    A direct comparison of afferents to the rat anterior thalamic nuclei and nucleus reuniens: overlapping but different

    Get PDF
    Both nucleus reuniens and the anterior thalamic nuclei are densely interconnected with medial cortical and hippocampal areas, connections that reflect their respective contributions to learning and memory. To better appreciate their comparative roles, pairs of different retrograde tracers were placed in these two thalamic sites in adult rats. Both thalamic sites receive modest cortical inputs from layer V that contrasted with much denser projections from layer VI. Despite frequent overlap in layer VI, ventral prefrontal and anterior cingulate inputs to nucleus reuniens were concentrated in the deepest sublayer (VIb). Meanwhile, inputs to the anterior thalamic nuclei originated more evenly from both sublayers VIa and VIb, with the result that they were often located more superficially than the projections to nucleus reuniens. Again, while the many hippocampal (subiculum) neurons projecting to nucleus reuniens and the anterior thalamic nuclei were partially intermingled within the deep cellular parts of the subiculum, cells projecting to nucleus reuniens consistently tended to lie even deeper, i.e., immediately adjacent to the alveus. Variable numbers of double-labelled cells were present in those cortical and subicular portions where the two cell populations intermingled, though they remained in a minority. Our data also show how projections to these two thalamic sites are organized in opposing dorsal/ventral and rostral/caudal gradients across both the cortex and hippocampal formation. While the anterior thalamic nuclei are preferentially innervated by dorsal cortical sites, more ventral frontal sites preferentially reach nucleus reuniens. These anatomical differences may underpin the complementary cognitive functions of these two thalamic areas

    The Anatomical Boundary of the Rat Claustrum

    Get PDF
    The claustrum is a subcortical nucleus that exhibits dense connectivity across the neocortex. Considerable recent progress has been made in establishing its genetic and anatomical characteristics, however, a core, contentious issue that regularly presents in the literature pertains to the rostral extent of its anatomical boundary. The present study addresses this issue in the rat brain. Using a combination of immunohistochemistry and neuroanatomical tract tracing, we have examined the expression profiles of several genes that have previously been identified as exhibiting a differential expression profile in the claustrum relative to the surrounding cortex. The expression profiles of parvalbumin (PV), crystallin mu (Crym), and guanine nucleotide binding protein (G protein), gamma 2 (Gng2) were assessed immunohistochemically alongside, or in combination with cortical anterograde, or retrograde tracer injections. Retrograde tracer injections into various thalamic nuclei were used to further establish the rostral border of the claustrum. Expression of all three markers delineated a nuclear boundary that extended considerably (∼500 μm) beyond the anterior horn of the neostriatum. Cortical retrograde and anterograde tracer injections, respectively, revealed distributions of cortically-projecting claustral neurons and cortical efferent inputs to the claustrum that overlapped with the gene marker-derived claustrum boundary. Finally, retrograde tracer injections into the thalamus revealed insular cortico-thalamic projections encapsulating a claustral area with strongly diminished cell label, that extended rostral to the striatum

    Author Correction: An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF

    Dynamics of place, boundary and object encoding in rat anterior claustrum

    No full text
    Discrete populations of brain cells signal differing types of spatial information. These ‘spatial cells’ are largely confined to a closely-connected network of sites. We describe here, for the first time, cells in the anterior claustrum of the freely-moving rat encoding place, boundary and object information. This novel claustral spatial signal potentially directly modulates a wide variety of anterior cortical regions. We hypothesise that one of the functions of the claustrum is to provide information about body position, boundaries and landmark information, enabling dynamic control of behaviour

    Neurons responding to whole-body motion in the primate hippocampus

    No full text
    We describe here hippocampal cells that respond during whole-body motion when a monkey is moved on a remote-controlled robot-mounted platform in a cue-controlled test chamber (2 x 2 x 2 m). Some of these cells responded to linear motion, and others to axial rotation. Some of these cells responded when the same motion occurred without a view of the visual field. Such cells appeared to be driven by vestibular inputs. Other cells required a view of the visual field for their response, and these cells appeared to be driv-en by the visual motion relative to the monkey of the test chamber. Further evidence that this was the case was that some of the cells responded to rotation and linear motion of the test chamber while the monkey remained stationary. Oth-er cells responded to combinations of whole-body motion and a view of the environment
    corecore